# LEARNING TO PLAY WITH QUANTUM LEGOS

Building Quantum Error Correcting Codes with Tensor Networks and Machine Learning

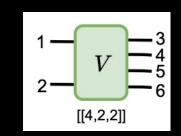
Vincent Su, UC Berkeley

Based on 2305.06378 w/ C. Cao, H.-Y. Hu, Y. Yanay, C. Tahan, Brian Swingle

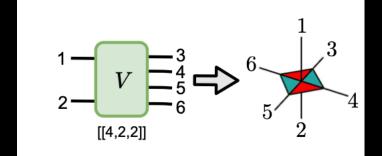
Quantum Information, Quantum Matter and Quantum Gravity, YITP 2023

### OVERVIEW

#### • Quantum Legos


- Quantum codes as tensors (Choi–Jamiołkowski)
- Building a tensor network of codes

#### Gamification

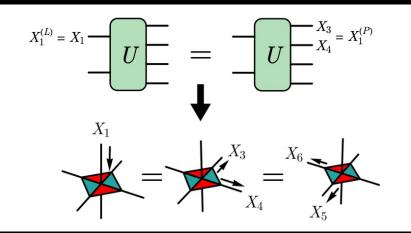

- Turn code design into a game
- Learn good moves by playing many times
- Results
  - Distance optimal CSS Code
  - State of the art protection against biased Pauli errors



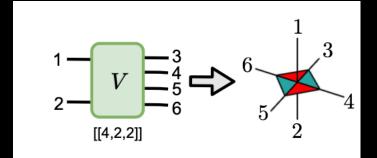
- Consider the following [[4,2,2]] code
- Stabilizers are S =  $\langle X_3 X_4 X_5 X_6, Z_3 Z_4 Z_5 Z_6 \rangle$   $s |\psi\rangle = |\psi\rangle$
- One logical operator is  $X_1 = X_3 X_4 = X_5 X_6$



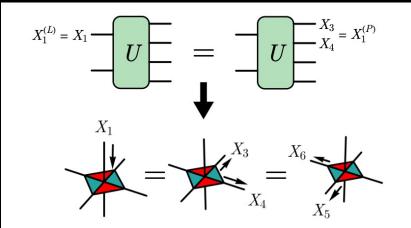
- Consider the following [[4,2,2]] code
- Stabilizers are  $\langle X_3 X_4 X_5 X_6, Z_3 Z_4 Z_5 Z_6 \rangle$   $s |\psi\rangle = |\psi\rangle$
- One logical operator is  $X_1 = X_3 X_4 = X_5 X_6$



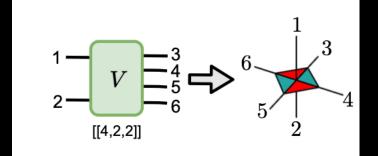

• Note that this isometry V can be interpreted as a stabilizer state!


- Consider the following [[4,2,2]] code
- Stabilizers are  $\langle X_3 X_4 X_5 X_6, Z_3 Z_4 Z_5 Z_6 \rangle$   $s |\psi\rangle = |\psi\rangle$
- One logical operator is  $X_1 = X_3 X_4 = X_5 X_6$

$$1 - V = \frac{3}{4} + \frac{1}{5} + \frac{3}{6} + \frac{1}{5} + \frac{3}{2} + \frac{3}{2$$


• Note that this isometry V can be interpreted as a stabilizer state!



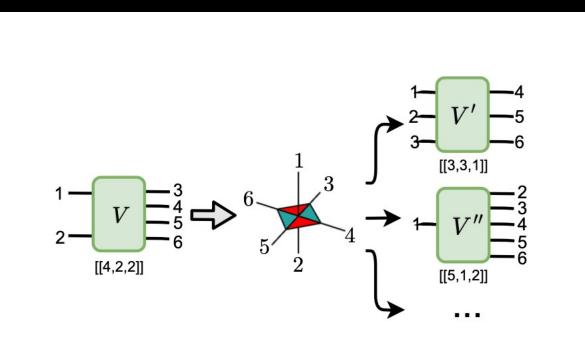

- Consider the following [[4,2,2]] code
- Stabilizers are  $\langle X_3 X_4 X_5 X_6, Z_3 Z_4 Z_5 Z_6 \rangle$   $s |\psi\rangle = |\psi\rangle$
- One logical operator is  $X_1 = X_3 X_4 = X_5 X_6$



- Note that this isometry V can be interpreted as a stabilizer state!
- What are the stabilizers?
  - $I_1 I_2 X_3 X_4 X_5 X_6$
  - $X_1 X_3 X_4 \ (= \ X_1^{(L)} X_1^{(P)} \sim I)$

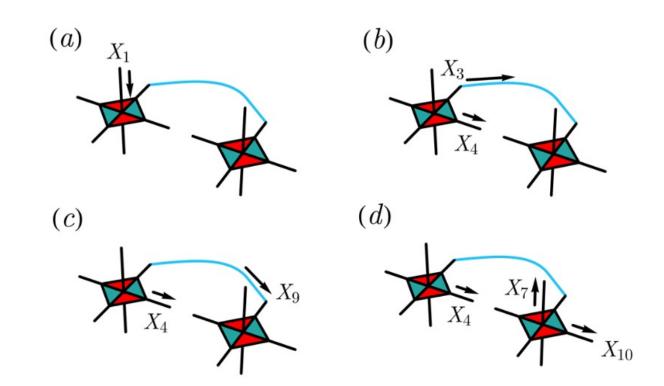


- Consider the following [[4,2,2]] code
- Stabilizers are  $\langle X_3 X_4 X_5 X_6, Z_3 Z_4 Z_5 Z_6 \rangle$   $s |\psi\rangle = |\psi\rangle$
- One logical operator is  $X_1 = X_3 X_4 = X_5 X_6$




- Note that this isometry V can be interpreted as a stabilizer state!
- What are the stabilizers?
  - $I_1 I_2 X_3 X_4 X_5 X_6$
  - $X_1 X_3 X_4 \ (= \ X_1^{(L)} X_1^{(P)} \sim I)$
- No sense of directionality, all physical legs!

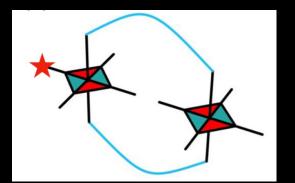



## $\overline{\mathsf{TENSOR}} \to \overline{\mathsf{CODE}(S)}$

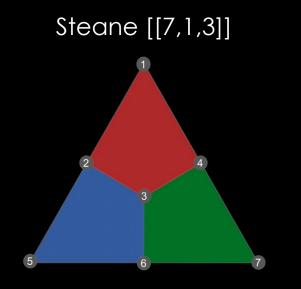
- The same tensor can represent multiple codes!
- Ask me later for details



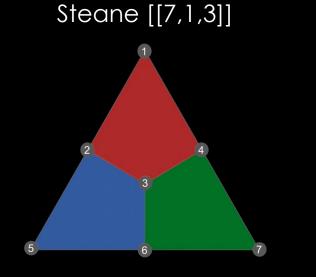
### ASSEMBLY INSTRUCTIONS [AGES 6+]


- Glue legs on two copies of the T6 lego
- Demand that stabilizers acting on those legs match
- Formally, amounts to a bell projection
- Alternatively, can do operator pushing
  - New stabilizer  $X_1 X_4 X_7 X_{10}$

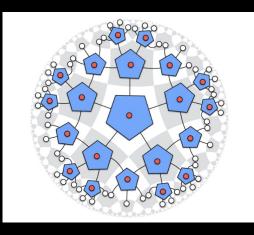



• Not obvious how useful the codes you can construct this way...

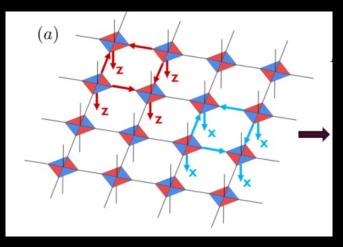
• Not obvious how useful the codes you can construct this way...


Steane [[7,1,3]]

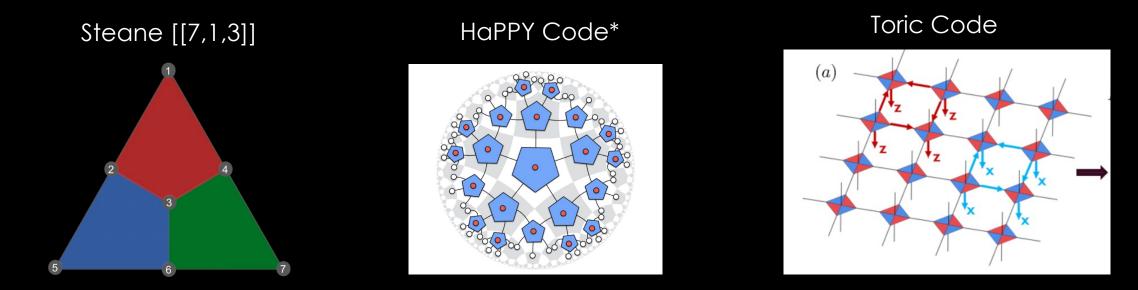



• Not obvious how useful the codes you can construct this way...




#### • Not obvious how useful the codes you can construct this way...



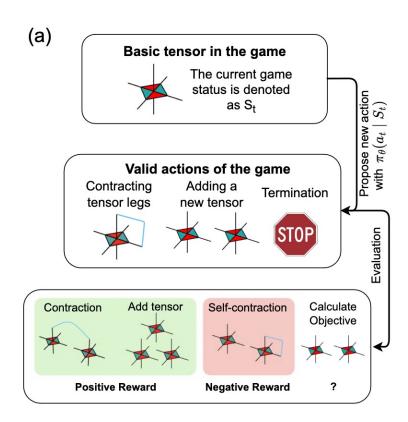

#### HaPPY Code



#### Toric Code



#### • Not obvious how useful the codes you can construct this way...



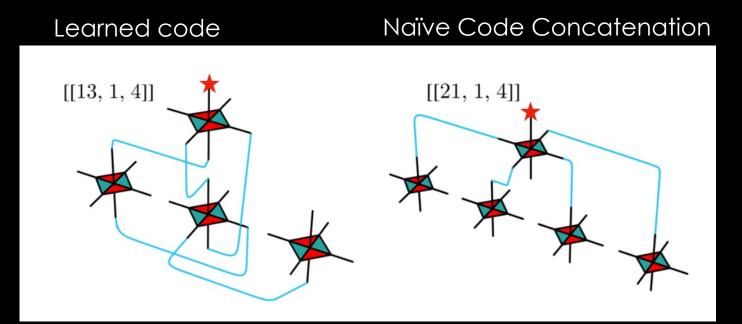

• These are all achievable with many copies of the **same** lego!

### LET'S PLAY A GAME

- The construction so far is tedious but simple (operator matching + pushing)
- Can an RL agent learn to produce new codes?
- Need to specify the ingredients

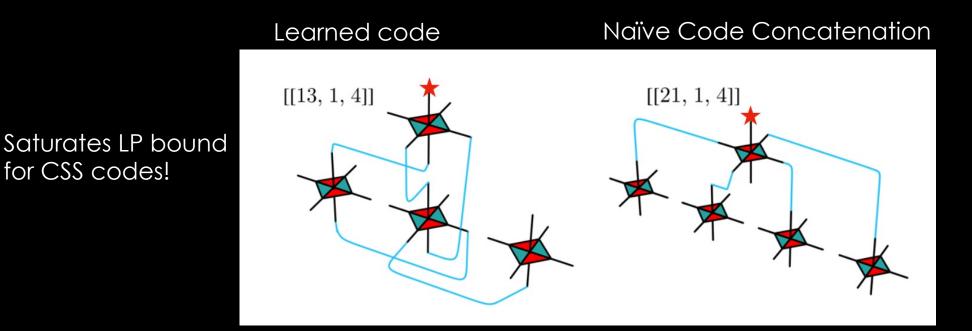
|         | Chess                      | Lego                                  |
|---------|----------------------------|---------------------------------------|
| States  | Board configurations       | Lego pieces, leg contractions         |
| Actions | Move, capture, castle      | Add a tensor, connect legs, terminate |
| Reward  | Checkmate, capture pieces, | ???????                               |




## GAME OVERVIEW

### GAME: DISTANCE MAXIMIZATION

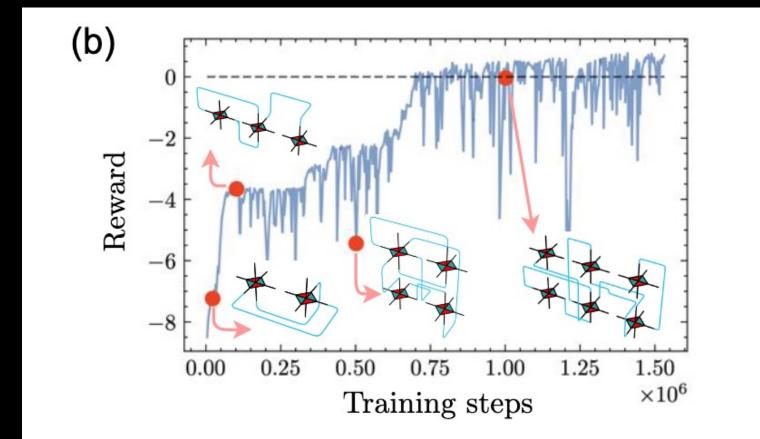
- The code distance d is a measure of robustness to adversarial errors
  - Counts minimum weight of logical operators
- Task: given a handful of T6 legos, produce a high distance code


### GAME: DISTANCE MAXIMIZATION

- The code distance d is a measure of robustness to adversarial errors
  - Counts minimum weight of logical operators
- Task: given a handful of T6 legos, produce a high distance code

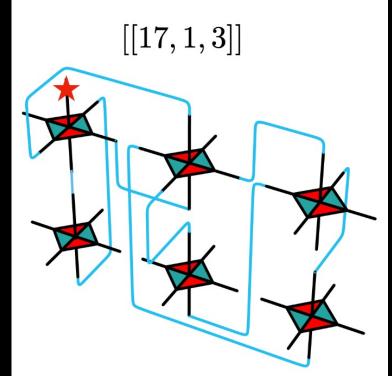


### GAME: DISTANCE MAXIMIZATION


- The code distance d is a measure of robustness to adversarial errors
  - Counts minimum weight of logical operators
- Task: given a handful of T6 legos, produce a high distance code



### GAME: PROTECT AGAINST BIASED NOISE

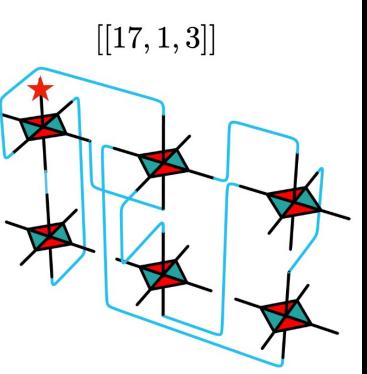

- Suppose you have a QC where Z flips occur more often than X flips.
  - $p_z = 0.05$ ,  $p_x = 0.01$  independently for each qubit
- A logical error occurs if errors accumulate to become a logical operation
  - e.g. with probability  $(p_x)^2(1-p_x)^2(1-p_z)^4$  we accidentally apply  $X_3X_4$
- Task: Minimize the probability of a logical error for a single qubit
  - Under this model, a 20 qubit surface code has  $4.38 \times 10^{-6}$  chance of a logical error occurring

### OVERVIEW OF LEARNING



### GAME: PROTECT AGAINST BIASED NOISE

## Using the exact same machinery, but tailoring the reward, we get the following code




| Code                                                      | $\left[ \left[ n,k,d_X/d_Z  ight]  ight]$ | $\begin{array}{c} p_L \\ (10^{-5}) \end{array}$ |
|-----------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| T6 BN 13A                                                 | [[13, 1, 3/4]]                            | .973                                            |
| T6 BN 13B                                                 | [[13, 1, 3/4]]                            | .973                                            |
| $\mathrm{CSS}~\mathrm{Self}	ext{-}\mathrm{Dual}^\dagger$  | $\left[ \left[ 13,1,3/3\right] \right]$   | 26.8                                            |
| $ m T6~DM~13^{\dagger}$                                   | [[13, 1, 4/4]]                            | 5.68                                            |
| Reed-Muller                                               | [[15, 1, 3/7]]                            | 1.43                                            |
| Surface $(4x4)$                                           | [[16, 1, 4/4]]                            | 1.46                                            |
| XZZX (4x4)                                                | $\left[\left[16,1,4/4 ight] ight]$        | 1.07                                            |
| T6 BN 17                                                  | [[17, 1, 3/4]]                            | .404                                            |
| $\mathrm{CSS}  \mathrm{self}	ext{-}\mathrm{dual}^\dagger$ | [[17, 1, 5/5]]                            | .726                                            |
| 2D Color                                                  | [[19, 1, 5/5]]                            | .456                                            |
| XZZX (4x5)                                                | [[20, 1, 4/4]]                            | .665                                            |
| XZZX (5x4)                                                | [[20, 1, 4/4]]                            | .665                                            |
| Surface $(4x5)$                                           | [[20, 1, 4/5]]                            | .438                                            |
| Surface $(5x4)$                                           | [[20, 1, 5/4]]                            | 6.58                                            |

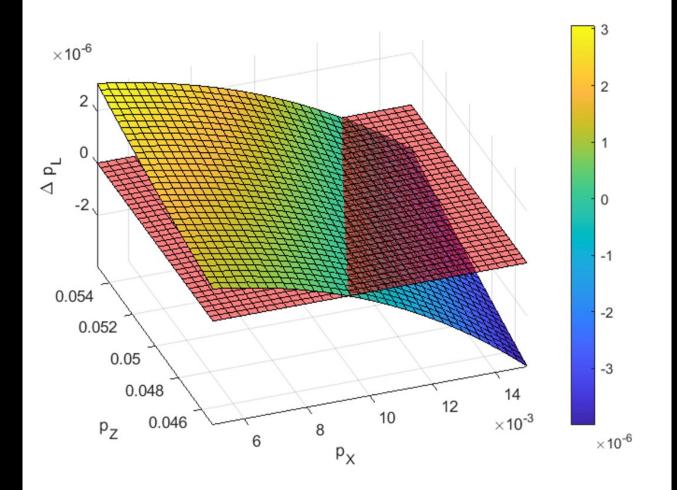
### GAME: PROTECT AGAINST BIASED NOISE

## Using the exact same machinery, but tailoring the reward, we get the following code

Distance is lower!



| Code                                                      | $\left[ \left[ n,k,d_X/d_Z  ight]  ight]$ | $p_L \ (10^{-5})$ |
|-----------------------------------------------------------|-------------------------------------------|-------------------|
| T6 BN 13A                                                 | [[13, 1, 3/4]]                            | .973              |
| T6 BN 13B                                                 | [[13, 1, 3/4]]                            | .973              |
| $\mathrm{CSS} \ \mathrm{Self-Dual}^\dagger$               | $\left[ \left[ 13,1,3/3\right] \right]$   | 26.8              |
| $ m T6~DM~13^{\dagger}$                                   | [[13, 1, 4/4]]                            | 5.68              |
| Reed-Muller                                               | [[15, 1, 3/7]]                            | 1.43              |
| Surface $(4x4)$                                           | [[16, 1, 4/4]]                            | 1.46              |
| XZZX (4x4)                                                | [[16, 1, 4/4]]                            | 1.07              |
| T6 BN 17                                                  | [[17, 1, 3/4]]                            | .404              |
| $\mathrm{CSS}  \mathrm{self}	ext{-}\mathrm{dual}^\dagger$ | [[17, 1, 5/5]]                            | .726              |
| 2D Color                                                  | [[19, 1, 5/5]]                            | .456              |
| XZZX (4x5)                                                | [[20, 1, 4/4]]                            | .665              |
| XZZX (5x4)                                                | [[20, 1, 4/4]]                            | .665              |
| Surface $(4x5)$                                           | [[20, 1, 4/5]]                            | .438              |
| Surface $(5x4)$                                           | [[20, 1, 5/4]]                            | 6.58              |


### TAKEAWAYS

- Quantum Legos provide a modular toolkit for building QECCs
- We discovered some cool codes!
  - Saturate linear programming bounds on distance for CSS codes
  - Beating 2D surface code variants at i.i.d. biased Pauli noise
- Designing new codes is a difficult, ambiguous task
- We propose a framework for discovering new codes that can be tailored to any purpose
  - Sometimes, yields counter-intuitive or surprising results

### FUTURE DIRECTIONS

- Different lego blocks?
- Simulation/experiment hybrid game?
- What code properties do we really want to optimize for?
  - Encoding rate
  - Device specific error models
  - Low weight check operators
  - Hardware/connectivity constraints
- Reverse engineering the HaPPY, toric code?

# THANK YOU



## ROBUSTNESS OF CODE

Outperforms over a range of  $p_z, p_x$